LTE多天线技术领域,大唐移动5G大规模多天线测试

2019-11-02 22:50栏目:通讯产品
TAG:

如何评价大规模多天线技术,针对协议上有关大规模多天线技术的设计及算法,采用什么样的测试指标和测试方法;怎样衡量大规模天线系统整体性能,大规模量产时整体的系统怎样验证;大规模天线系统在不同应用部署场景下,各种场景下性能如何验证;都是需要从测试角度充分考虑的问题。凭借在5G技术及测试领域的积累和优势,大唐移动在大规模多天线测试方面取得了较多的进展。

天线作为将承载信息的电磁波,是向无线信道馈送或是从无线信道中接收电磁信号的关键部件。天线子系统的设计方案对移动通信系统的构架、设备的尺寸以及网络部署都会带来影响。对于MIMO技术而言,更是要依赖于天线阵列所带来的空间自由度,才能展现其性能优势。

2009年,本着支持从TD-SCDMA向TD-LTE平滑演进的理念,实现低成本且快速网络升级的目标,大唐移动协同中国移动共同发布了TD-LTE增强型技术——8天线双流波束赋形技术。该技术沿用并扩展了TD-SCDMA的特色技术,结合了智能天线波束赋形技术与MIMO空间复用技术的技术特点和优势,主要应用于室外场景的宏小区覆盖,可明显提升系统吞吐量性能与网络的小区覆盖能力,从而减少站点需求,降低建网CAPEX投入,有助于构建高品质TD-LTE网络。经过测试,8天线的性能优势已经在试验网中得到证明,8天线相比于2天线性能增益明显。考虑TD-LTE网络性能和未来的MIMO持续增强的问题,室外宏基站采用成熟的8天线已成为运营商的首选。8天线双流波束赋形技术是最能体现TD-LTE特征的特色技术。

二、3D MIMO成功突破应用场景限制,有效提升4.5G系统容量

最后,需要多用户配对性能测试。通过连接信道模拟器,在不同信道场景不同运动速度好中差点多用户同时存在情况下,选择合适的用户之间进行配对,进行吞吐量最大化的多用户配对性能测试。

一直以来,3GPP/3GPP2均采用2D信道模型作为参考信道模型,电磁波仅通过水平方向传播。现有对3D 空间特性的建模过于理想化。需要进行3D MIMO信道建模的深入研究,通过对3D MIMO信道进行测量,建立起科学可靠的3D MIMO信道模型,一方面确定出合理正确的模型,另一方面基于中国的地形地貌实际给出更事宜中国场景的应用模型。

由于上下行速率需求的不对称,TD-LTE标准在制定时就已考虑到TD-LTE网络上下行能力不对称的设计,并体现在上下行可占用的资源以及数据流数等方面。而在目前的实际TD-LTE网络中,因为终端原因导致的上行64QAM的高阶调制方式一直未能引入,在上行只具备一个数据流的情况下,20MHz带宽的上行吞吐量也只有10 Mbps左右,但是随着后续TD-LTE网络的广泛建设和应用,各种业务应用对于上行速率将提出更高需求。

现有的MIMO传输方案由于受限于传统的基站天线构架,一般只能在水平维度实现对信号空间分布特性的控制,还无法充分利用3D信道中垂直维度的自由度,未能从更深层次挖掘出MIMO技术对于改善移动通信系统整体效率与性能及最终用户体验的潜能。而随着天线设计构架的演进以及AAS技术的实用化发展,移动通信系统的底层设计及网络结构设计思路也发生了巨大变化,这一发展趋势直接推动着MIMO技术向着更高维度发展,为进一步提升系统性能提供了更多可能。

作为5G的关键技术之一,大规模多天线技术,是在基站收发信机上采用超大规模天线阵列(比如数百个天线或更多)实现了更大的无线数据流量和连接可靠性。相比于传统的单/双极化天线及4/8通道天线,大规模天线技术能够通过不同的维度(空域、时域、频域等)提升频谱效率和能量的利用效率;3D赋形和信道估计技术可以自适应地调整各天线阵子的相位和功率,显著提升系统的波束指向准确性,将信号强度集中于特定指向区域和特定用户群,在增强用户信号的同时可以显著降低小区内干扰、邻区干扰,是提升用户信号SINR的绝佳技术。

一、3D MIMO技术为提升LTE传输性能提供更广阔的空间

IRC技术在TD-LTE网络中被引入并广泛应用是创新性的。根据多天线信号处理的理论,国内TD-LTE网络中的8天线形态非常适宜采用IRC技术进行上行接收,8天线系统的IRC算法效果要比2天线系统IRC算法效果明显。

1、3D MIMO从室外覆盖高层楼宇更经济

2.进行下行导频和预编码测试,验证不同端口的CSI-RS发送方案和下行预编码码本的计算,进行下行测量导频开销、码本计算准确性测试。

针对现有基站天线结构在垂直维赋形能力的缺陷,一种自然的想法便是增加垂直维度的物理天线端口,以实现在基带对每个阵子的独立控制。有源天线系统的兴起,解决了基于现有的被动天线结构实现垂直赋形的难题,其将天线阵列中的每个辐射单元与相应的射频/数字电路模块集成在一起所构成的,是能够通过数字接口独立控制每个阵子的主动式天线阵列。

大唐移动作为我国高科技领域的标杆企业,在推动我国TD-LTE网络商用的过程中,始终致力于TD-LTE技术与标准的创新,力图通过TD-LTE关键技术的改进来提升TD-LTE网络性能,使TD-LTE商用网络真正成为承载高数据业务的优质网络。近年来,大唐移动在南京、宁波、福州等地的TD-LTE规模试验网络中验证和应用了一系列创新关键技术,均取得了良好效果。

一直以来,3GPP/3GPP2均采用2D信道模型作为参考信道模型,电磁波仅通过水平方向进行传播,现有的MIMO技术研究也主要是针对2D信道进行的。

1.进行上行导频和预编码测试,通过移相系统或者信道模拟系统,远中近点用户构造不同用户间干扰及多径信道对不同端口的SRS发送方案和上行预编码版本的计算,进行导频开销、码本计算准确性测试。

C114讯 LTE系统物理层的基本构架建立在OFDM+MIMO的基础之上。MIMO即多天线技术,对于提高数据传输的峰值速率与可靠性、扩展覆盖、抑制干扰、增加系统容量、提升系统吞吐量有着重要作用。面对速率与频谱效率需求的不断提升,对MIMO技术的增强与优化始终是LTE系统演进的一个重要方向。

C114讯 8月2日消息,随着移动互联网的快速发展,数据业务已成为移动网络流量的主力军。在3G时代,受限于带宽能力,高数据流量业务并没有大范围普及应用。而如今,我国的通信发展已进入到“LTE时代”,LTE网络将凭借其大带宽、高容量、低时延的特点,彻底改变这一现象。目前,TD-LTE作为LTE的分支,在我国已经过规模技术试验及扩大规模试验的锤炼,我国的TD-LTE产业在各个方面均已取得了长足进展。

针对现有基站天线结构在垂直维度赋形能力存在的缺陷问题,一种自然的想法便是增加垂直维度的物理天线端口,以实现在基带对每个阵子的独立控制。有源天线系统的兴起,解决了基于现有的被动天线结构实现垂直赋形的难题,其将天线阵列中的每个辐射单元与相应的射频/数字电路模块集成在一起所构成,是能够通过数字接口独立控制每个阵子的主动式天线阵列。在有源天线系统中,基站与天线系统之间不再需要射频电缆、塔放或RRU这样的中间环节,基站设备与天线系统之间可以直接通过光纤进行连接。在这种情况下,射频电缆这一横亘在垂直维度物理天线端口开放之路上的障碍随之迎刃而解。

3.进行波束扫描的测试,通过移相系统或者信道模拟系统,模拟用户的不同位置和不同的运动方向,水平+垂直运动,确认不同的用户接收到理论应该接收的波束,同时进行覆盖增强的增益的测试。

通过天线和MIMO技术,基站对信号空间分布特性的调整大致可分为两个层面。第一个层面是扇区级赋形,是对公共信道与公共物理信号的扇区级进行调整,即根据网络优化目标调整扇区的覆盖参数,其赋形方式并不针对某个UE的小尺度信道进行优化,而且扇区赋形的调整是一个相对静态的过程;相对应的,用户级调整则是针对每个UE所进行的UE级的动态赋形或预编码,其目的在于使每个UE的业务信道的传输与其信道特性相匹配。

在这方面,采用多用户MIMO的技术可有效提高上行容量。上行多用户MIMO是指多个用户共享相同的时频资源,利用空间信道的不相关性,支持多个并行传输的数据流,即来自不同终端发送的数据流占用相同的时频资源。从基站看,就如同接收从同一个“虚拟终端”的多个数据流一样,从而构成了一个虚拟MIMO系统。相比于SU-MIMO,上行MU-MIMO增加的数据流数可认为是提供了数倍的等效PRB资源,最大限度提高频谱利用率和扇区吞吐量。

随着收发天线数目的逐渐增多和传输模式的不断丰富,3D MIMO技术将继续得到发展和演进,在提高数据传输效率和可靠性的同时,全面提升无线通信系统性能。

首先,需要进行天线校准测试。为了实现精确波束赋形,射频信号路径间的相位差须小于±5°。通过使用移相器或者信道模拟器对大规模天线的所有射频通道进行校准结果的验证。

现有MIMO技术的研究仍主要针对2D信道,基于3D应用场景的反馈机制、传输方案以及相关的多用户调度算法、预编码算法、码本设计、链路自适应方案及控制信令都需要重新考虑,以充分地利用3D信道中垂直维度的自由度,更深层地挖掘出MIMO技术对于改善移动通信系统整体效率与性能及最终用户体验的巨大潜能。

3、上行MU-MIMO(上行多用户MIMO)

与传统MIMO不同的是,3D MIMO中所采用的天线规模发生了巨大变化,天线数目大幅增加,随着基站天线数目趋向于很多时,各UE的信道将趋向于正交,用户间的干扰趋于消失,由此带来的巨大的天线阵列增益将有效提升每个用户的信噪比,因此可在相同的时频资源上支持更多用户的传输,提升小区的平均频谱效率。3D MIMO通过引入新天线和新技术,在满足灵活组网需求的同时,有效提升系统容量,已经得到了业内的广泛关注。

随着3GPP 5G 标准NSA方案的正式发布,5G NR相关商用产品的开发工作已经加快,2018年将是5G标准确定和商用产品研发的关键一年。当前,5G正处于标准确定的关键阶段,国际标准组织3GPP将于今年6月份完成5G SA第一版本国际标准。我国于2016年初率先启动了5G研发和试验,目前已经进入第三阶段研发试验,将推动5G系统设备基本达到预商用水平。

二、新天线新技术突破场景覆盖限制及网络覆盖质量

TD-LTE网络为多天线系统,在采用多天线进行接收的情况下,各接收天线的噪声是相互独立的,而各接收天线的干扰信号存在相关性。传统的MRC检测实际上是将邻小区干扰等同于噪声来看待,而不是作为干扰进行处理,因此会带来检测失真:在干扰较小时,接收性能较好;而在干扰较大时,接收性能急剧下降。

空间自由度是MIMO多天下技术的安身立命之本。在有源天线系统技术的有力支持下,垂直维度的空间自由度的大门已悄然向MIMO技术开启,简单来说,有了有源天线系统技术,3D MIMO技术在不需要改变现有天线尺寸的条件下,可以将每个垂直的天线阵子分割成多个阵子,从而开发出MIMO的另一个垂直方向的空间自由度,从而将MIMO技术推向了一个更高的发展阶段,为LTE传输技术的性能提升开拓出更广阔的空间,使得进一步降低小区间干扰、提高系统吞吐量和频谱效率成为可能。

对于大规模天线系统,目前普遍采用的方式是射频单元和信号辐射单元合为一体的有源天线。对于在频段范围6 GHz以下的时候,波长相对较大,各射频单元之间的间距还比较大,可以采用传统的传导方式进行测试,但是针对有源天线整体的测试,还是需要进行一体化的OTA测试。对于在频段范围大于6 GHz的毫米波频段,由于波长很小,各射频单元的间距很小,同时射频单元与辐射单元都集成在一起,不能再使用传统的传导方式进行测试,只能进行OTA测试。

虽然3D MIMO技术的天线产品和MIMO技术本身都还不是那么成熟,但是并不妨碍产业界对其的殷切关注目光。因为,新天线和新技术的引入对于现有网络天线技术应用场景着实是一个突破。

为了解决这个问题,在进行接收机算法设计时,采用一种新的接收机算法,有区别的对噪声和干扰进行处理,以提升TD-LTE系统的接收检测性能。在南京TD-LTE现网中,大唐移动率先验证并采用了干扰消除合并技术,在多天线接收时,接收端利用各天线干扰信号的时空相关性,通过对接收信号进行加权,降低用户间干扰。根据扩大规模试验测试以及规模网络应用验证,在邻区有较强上行干扰时,开启IRC算法对于小区边缘用户的上行吞吐量有接近100%的增益。

MIMO多天线技术作为LTE系统物理层的基本构成之一,主要可以分为空间复用、传输分集和波束赋形三种模式。它可以充分利用空间特性,通过在发送端和接收端均使用多根天线进行数据的发送和接收,对于提高数据传输的峰值速率、扩展覆盖、抑制干扰、增加系统容量、提升系统吞吐量都发挥着重要作用, 已经成为下一代通信中的关键技术。

大规模天线系统整体性能测试

1、3D MIMO从室外覆盖高层楼宇更经济

1、8天线双流波束赋形技术

图片 1

协议设计测试

在现有的基站天线结构中,由于物理天线端口对应于一个水平方向上排列的线性阵列,调整各物理天线端口的幅度及物理天线端口间的相对相位等效于控制信号在水平维度的分布。因此无论对扇区赋形还是UE级动态赋形而言,都可以通过天线映射模块在基带实现相关操作。

图片 2

随着标准和技术的不断发展和演进,4.5G在网络容量、峰值速率、时延等技术指标层面与4G相比均有了质的提升。3D MIMO作为4.5G的核心技术之一,打破传统天线只能提供水平维度的限制,通过引入二维天线阵列,可同时实现水平和垂直方向上的MIMO,进一步提升MIMO可利用的空间维度,将MIMO多天线技术推向了一个更高的发展阶段,为全面提升无线通信系统性能提供了更多发展空间。

图片 3

简单来说,3D MIMO技术在不改变现有天线尺寸的条件下,可以将每个垂直的天线阵子分割成多个阵子,从而开发出MIMO的另一个垂直方向的空间维度,进而将MIMO技术推向一个更高的发展阶段,为LTE传输技术的性能提升开拓出更广阔的空间,使得进一步降低小区间干扰、提高系统吞吐量和频谱效率成为可能。但是在实现3D MIMO技术的过程中还有很多研究工作。

2、IRC技术

一、3D MIMO新天线&新技术,为提升4.5G传输性能提供更多可能

在现有的一体化系统的架构下,大规模多天线系统的基站研究的方向主要包括:基站天线架构设计、物理层信号检测、物理层信道估计;MU-MIMO配对算法、用户调度和资源分配策略等。随着天线数的增多,大规模多天线的性能将会趋于平缓,天线趋于很多时,信道之间趋于正交,此时可以使用多用户复用。MU-MIMO技术的核心是信道估计和多用户配对算法。快速有效的信道检测与估计;根据场景和应用,选择合适的多用户配对算法进行物理资源的调度和资源分配。针对以上这些关键算法的研究,需要进行相应的验证测试。

在有源天线系统中,基站至天线系统之间不再需要射频电缆、塔放或RRU这样的中间环节,基站设备与天线系统之间可以直接通过光纤连接。这种情况下,射频电缆这一横亘在垂直维物理天线端口开放之路上的障碍随之迎刃而解。

其次,需要进行干扰抑制性能测试。为了降低用户之间的干扰,针对给每个用户发送的赋形信号之间干扰要尽量小,基站需要进行干扰抑制,在不同信道场景不同用户位置的情况下,进行干扰抑制的性能测试。

空间自由度是MIMO技术的安身立命之本。有了AAS技术的支撑,垂直维自由度的大门已悄然向MIMO技术开启,MIMO技术中已积蓄多年的向着3D化发展的势头从此将一发而不可收,在UE级实现对信号垂直维分布的控制,充分利用信道的垂直维自由度,这对于MIMO技术而言,将是一片广阔的研究领域。

关键算法性能测试

图片 4

在5G NR协议中为了提高覆盖的性能在不同的传输信道定义了不同的下行导频,针对不同用户使用不同的DMRS,同时定义了多种多端口CSI-RS专门用于信道质量测量和预编码码本的计算。在上行信道也采用相同的思想,定义不同用户的DMRS和多端口SRS用于信道质量的测量和预编码码本的计算。天线数增多后,业务信道的覆盖通常能满足要求,而控制信道的能力并不会随着天线数增多而增强,因此控制信道的覆盖将会成为系统性能的瓶颈。在NR系统中,针对控制信道引入了波束扫描增强覆盖的技术。在大规模多天线中,需要选择合适的波束扫描的宽度和频率,进行波束管理和波束跟踪。在不同用户位置和信道环境下,需要验证基站采用何种码本发送和接收,采用发送几端口导频才能使用户之间干扰很小,导频占用开销尽量少,频谱效率最优。针对上述问题,大唐移动提出了对应的测试策略。

受限于传统的基站天线构架,现有的MIMO传输方案一般只能在水平面实现对信号空间分布特性的控制,还没有充分利用3D信道中垂直维度的自由度,更没有深层地挖掘出MIMO技术对于改善移动通信系统整体效率与性能及最终用户体验的潜能。

但是对于每个天线端口内部所对应的一列阵子而言,由于没有相应的物理天线端口与之一一对应,因此无法在基带直接调整每个阵子的加权系数。这种情况下,信号功率在垂直维分布调整的灵活度受到了一定的限制。对于扇区赋形而言,尚可以通过对每个阵子所连接的射频电缆的时延和衰减的调节,在射频实现对下倾角的控制。或者,也可以通过机械方式调整基站天线面板的俯仰角。但是对于每个UE的业务传输而言,在垂直维就无法实现针对小尺度信道的动态优化了。

随着天线设计构架的演进,AAS技术的实用化发展已经对移动通信系统的底层设计及网络结构设计思路带来巨大影响,这一发展趋势必将推动MIMO技术由传统的针对2D空间的优化设计向着更高维度的空间扩展。

多年来,大唐移动在TD-LTE多天线技术领域进行了全面布局,通过对3D MIMO技术的产学研用一体化探索,力争引导产业界共同推进3D MIMO系统的研究、验证、设计和标准化进程,扩大我国在多天线技术学术研究及相关产业发展领域中的影响力。

换言之,按照目前的基站天线结构,LTE的MIMO传输方案只能在水平维实现对传输过程的优化,还不能完全匹配实际的三维信道,因此没有能够充分地利用信号在垂直维的自由度。此外,小区分裂或进一步的扇区分裂也是扩展系统容量的重要手段,但是受限于传统的基站天线结构,在不增加天线与射频设备的前提下无法实现垂直维度扇区化(通过下倾角划分扇区)。对于具有不同垂直角度的区域,如高层建筑的不同高度范围,往往需要多面天线来分别覆盖。

版权声明:本文由365bet亚洲首页发布于通讯产品,转载请注明出处:LTE多天线技术领域,大唐移动5G大规模多天线测试